obscurebourgeoisie:

don’t buy colgate whitening toothpaste

it says guaranteed whiteness in 14 days

15 days have come and gone

and i am still asian

feministbatwoman:

gishkishenh:

hojasenblanco:

Dangerous wolf

Big Bad Wolf, indeed.

"WHOSAN APEX PREDATOR? IS IT YOU? IS IT YOU? IT IS YOU!"
accidentalambience:

our permaculture farming enterprise, located within our small upper midwest community’s city limits, will offer produce from “niche” crops… enticing consumers to try something new!
bisexualnatasharomanoff:

astrodidact:

via ScienceAlert
Titanium dioxide breaks down smog particles in the air, and students in the US have shown that in one year, one roof coated in it can break down the smog from a car that’s driven 17,000 km(10,500 miles). And every day, 21 tonnes of smog could be eliminated by one million treated roofs.
http://txchnologist.com/post/88500055810/students-show-common-compound-breaks-down-air-pollution

Kawai Tam, Chun-Yu “Jimmy” Liang, Jessica Moncayo, Edwin Rodriguez, Carlos Espinoza, Kelly McCoy, David Cocker and Louis Lancaster. From UC Riverside. Not just “Engineering students”.

Abandoned Victorian Style Greenhouse, Villa Maria, in northern Italy near Lake Como. Photo taken in 1985 by Friedhelm Thomas
thenewenlightenmentage:

Star Formation Triggers
This composite image, combining data from NASA’s Chandra X-ray Observatory and Spitzer Space Telescope shows the star-forming cloud Cepheus B, located in our Milky Way galaxy about 2,400 light years from Earth. A molecular cloud is a region containing cool interstellar gas and dust left over from the formation of the galaxy and mostly contains molecular hydrogen. The Spitzer data, in red, green and blue shows the molecular cloud (in the bottom part of the image) plus young stars in and around Cepheus B, and the Chandra data in violet shows the young stars in the field.
The Chandra observations allowed the astronomers to pick out young stars within and near Cepheus B, identified by their strong X-ray emission. The Spitzer data showed whether the young stars have a so-called “protoplanetary” disk around them. Such disks only exist in very young systems where planets are still forming, so their presence is an indication of the age of a star system.
These data provide an excellent opportunity to test a model for how stars form. The new study suggests that star formation in Cepheus B is mainly triggered by radiation from one bright, massive star (HD 217086) outside the molecular cloud. According to the particular model of triggered star formation that was tested — called the radiation- driven implosion model — radiation from this massive star drives a compression wave into the cloud triggering star formation in the interior, while evaporating the cloud’s outer layers.
Different types of triggered star formation have been observed in other environments. For example, the formation of our solar system was thought to have been triggered by a supernova explosion. In the star-forming region W5, a “collect-and-collapse” mechanism is thought to apply, where shock fronts generated by massive stars sweep up material as they progress outwards. Eventually the accumulated gas becomes dense enough to collapse and form hundreds of stars. The radiation-driven implosion model mechanism is also thought to be responsible for the formation of dozens of stars in W5. The main cause of star formation that does not involve triggering is where a cloud of gas cools, gravity gets the upper hand, and the cloud falls in on itself.
Image Credit: NASA/CXC/JPL-CALTECH/PSU/CFA
upclosefromafar:

🐘